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In this note we consider long-range q-states Potts models on Zd , d ≥ 2. For various
families of non-summable ferromagnetic pair potentials φ(x) ≥ 0, we show that there
exists, for all inverse temperature β > 0, an integer N such that the truncated model,
in which all interactions between spins at distance larger than N are suppressed, has at
least q distinct infinite-volume Gibbs states. This holds, in particular, for all potentials
whose asymptotic behaviour is of the type φ(x) ∼ ‖x‖−α , 0 ≤ α ≤ d. These results are
obtained using simple percolation arguments.
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1. INTRODUCTION

The existence of phase transitions, in lattice systems of equilibrium statistical
mechanics, is a mathematically well posed problem in the canonical framework of
infinite-volume Gibbs states with summable interactions(19). For such interactions,
the Dobrushin Uniqueness Theorem guarantees uniqueness of the Gibbs state at
high temperature, and non-uniqueness at low temperature is usually obtained as a
consequence of high sensitivity to boundary conditions. The two-dimensional Ising
model, for example, can be prepared in distinct thermodynamic states by taking the
thermodynamic limit along sequences of boxes with different boundary conditions.
The combination of these high and low temperature behaviours leads to a well
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defined finite critical temperature Tc > 0. In general, the low temperature phases,
0 < T < Tc, are described by local deviations from the ground state configurations
of the hamiltonian, at which the measure concentrates when T → 0.

For non-summable interactions, infinite-volume Gibbs states and the thermo-
dynamic limit are not defined. Physical quantities like the free energy or pressure
density don’t exist, due to the fact that in the limit of large volumes, the energy of
the system grows faster than its size. Even the use of boundary conditions, in finite
volumes, poses problems. The pathological behaviour of non-summable systems
was well described by Dyson, at a heuristic level in the case of ferromagnetic Ising
models(12): “When [the potential is non-summable] there is an infinite energy-gap
between the ground states and all other states, so that the system is completely
ordered at all finite temperatures, and there can be no question of a phase tran-
sition”. In other words, since the cost for flipping any given spin is infinite, the
temperature, even very high, can never obtain to create local deviations from the
ground states, as the ones described above in the case of summable potentials: at
any temperature the system is “frozen” in one of its ground states, and no critical
temperature can be defined. Therefore one can infer that infinitely large lattice
systems with non-summable potentials have, independently of the method used to
describe them, trivial thermodynamic behaviour. Nevertheless, various rescalings
have been considered in the literature, in view of obtaining non-trivial quantities
(called pseudo-densities) in the thermodynamic limit. See for example(23) for a
different scaling of the free energy of gravitational and electrostatic particle sys-
tems, or(9,10,31), where mean field versions of ferromagnetic spin models with
non-summable interactions have been studied numerically.

In the present note, we study non-summable systems by using a simpler ap-
proach which is the following. Let µφ,� denote the Gibbs distribution of the system
with ferromagnetic pair interaction φ in finite volume �. Since nothing can be said,
in the sense of weak convergence, about the existence of the thermodynamic limit

lim
�

µφ,�,

we first truncate the potential φ by suppressing interactions between points at
distance larger than N :

φN (x) :=
{

φ(x) if ‖x‖ ≤ N ,

0 if ‖x‖ > N ,
(1)

and then study the double limiting procedure

lim
N→∞

lim
�

µφN ,�.

Since φN has finite range, the infinite-volume truncated model with measure
µφN = lim� µφN ,� is well defined. Observe that in d = 1, µφN does not
show interesting dependence on boundary conditions, since one dimensional
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finite-range models don’t exhibit phase transitions. Nevertheless, for d ≥ 2 and
when φ is non-summable, the phenomenon which we observe is the following: for
any temperature, the measure µφN becomes sensitive to boundary conditions once
N is large enough (but finite). This means that if φ has a finite set of ground state
configurations indexed by s, and if we denote by µs

φN
= lim� µs

φN ,� the Gibbs
state obtained by taking the thermodynamic limit along a sequence of boxes with
boundary condition s, then µs

φN
�= µs ′

φN
when N is sufficiently large. Moreover, in

the limit N → ∞, each µs
φN

converges weakly to δs , the Dirac measure concen-
trated on the ground state configuration s. This concentration phenomenon in the
limit N → ∞ at any fixed temperature T > 0 is thus similar to the one discussed
above for summable interactions in the limit T → 0 for systems in dimensions
d ≥ 2, and is in agreement with Dyson’s heuristic description of non-summable
interactions. Notice that in our approach, the interaction between any pair of spins
is restored in the limit N → ∞, and no mean field rescaling is ever used.

In Section 2 we show that the scenario presented above indeed occurs for the
ferromagnetic Potts model on Zd , d ≥ 2, for various families of non-summable
potentials. Our results include, for instance, all potentials with slow algebraic
decay (see Theorem 1):

φ(x) ∼ 1

‖x‖α
for some 0 ≤ α < d, (2)

which are the usual non-summable potentials considered in physics. Nevertheless,
our aim is to treat general interactions, which need not be asymptotically regular
as in (2), but can have an irregular structure. We also give two results for sparse
interactions, which are of independent interest. In Section 3 we give the inequality
which allows to study this problem via independent long-range percolation and
then reformulate and prove all our results in this setting. As will be seen, the
proofs are simple geometric arguments. In Section 4 we conclude with some
general remarks.

This work originated with the study of the problem of truncation in inde-
pendent long-range percolation(16) (see refs.(3,28,30) for other cases treated in the
literature). Therefore, the results presented in Section 3, independently of the
rest of the paper, give more particular cases where this problem can be solved.
Nevertheless, our techniques don’t rely on multiscale analysis or renormalisation
such as those of refs.(3,28,30), and allow irregular asymptotic behaviour of the edge
probabilities.

2. LONG-RANGE POTTS FERROMAGNET

We consider the lattice Zd , d ≥ 2, with the norm ‖x‖ = maxk=1,...,d |xk |. In-
teractions are defined via a ferromagnetic potential, which is any function
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φ : Zd\{0} → [0,+∞) such that supx �=0 φ(x) < +∞, with the symmetry

φ(x) = φ(y) when ‖x‖ = ‖y‖. (3)

Let N ∈ N. To each potential φ can be associated a truncated potential φN , defined
as in (1). In the q-state Potts model, q ≥ 2 is any fixed integer, and at each
site x ∈ Zd lives a spin σx ∈ {1, 2, . . . , q}. When q = 2 it thus reduces to the
Ising model. Spin configurations are elements of � = {1, 2, . . . , q}Zd

. Consider
a finite box �L = [−L ,+L]d ∩ Zd , L ≥ 1. For σ ∈ ��L = {1, 2, . . . , q}�L , the
truncated Potts Hamiltonian with boundary condition η ∈ � is given by

Hη

N ,�L
(σ ) = −

∑
{x,y}⊂�L

x �=y

φN (x − y)δ(σx , σy) −
∑

x∈�L ,y∈�c
L

φN (x − y)δ(σx , ηy),

where δ(a, b) = 1 if a = b, 0 otherwise. We will mainly be interested in consider-
ing the pure s boundary condition, in which η j = s for all j ∈ Zd . We have, with
some abuse of notation,

H s
N ,�L

(s) = min
σ∈��L

H s
N ,�L

(σ ).

Therefore, we also call the pure configurations s ground state configurations.
On ��L , the truncated Gibbs measure at inverse temperature β > 0 with pure s
boundary condition is defined by:

µ
β,s
φN ,�L

(σ ) := 1

Zβ,s
φN ,�L

exp
( − βH s

N ,�L
(σ )

)
,

where Zβ,s
φN ,�L

is a normalizing factor. Let F be the σ -algebra on � generated by

cylinder events. We consider the infinite-volume Gibbs measures µ
β,s
φN

on (�,F),
obtained by taking limits along an increasing sequence of boxes1 (this limit is to
be understood in the sense of subsequences):

µ
β,s
φN

(A) := lim
L→∞

µ
β,s
φN ,�L

(A) ∀A ∈ F .

A phase transition occurs in the truncated model if µ
β,s
φN

�= µ
β,s ′
φN

for s ′ �= s.
Let BN := �N \{0}. When φ is summable, i.e. when∑

x �=0

φ(x) := lim
N→∞

∑
x∈BN

φ(x) (4)

1 Here we extend µ
β,s
φN ,�L

to a measure on (�,F ) in the standard way:

µ
β,s
φN ,�L

(A) :=
∑

σ∈��L

µ
β,s
φN ,�L

(σ )1A(σ · s) ∀A ∈ F ,

where the configuration σ · s ∈ � coincides with σ on �L and with s on �c
L .
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exists, the untruncated Gibbs measures (with N = ∞) µ
β,s
φ are well defined, and

the problem of knowing whether µ
β,s
φ �= µ

β,s ′
φ for some s ′ �= s depends strongly

on the temperature. When φ is not summable these measures are not defined, and
we study µ

β,s
φN

at large N . We remind that for fixed N , in the limit of very low

temperature, β → ∞, the typical configurations of µ
β,s
φN

concentrate on the ground
state configuration s.(29) When the temperature is fixed and N becomes large, we
observe essentially the same phenomenon. In view of the argument of Dyson cited
in the Introduction, it is reasonable to believe that at any fixed β > 0, each of the
measures µ

β,s
φN

concentrates, when N → ∞, on a single configuration, which is
the ground state s. This is the statement of the following conjecture. Let δs denote
the Dirac mass on (�,F) concentrated on the ground state configuration s, and
write µ

β,s
φN

⇒ δs when µ
β,s
φN

converges weakly to δs in the limit N → ∞.

Conjecture 1. (d ≥ 2) If φ ≥ 0 satisfies (3) and is non-summable, i.e.∑
x �=0

φ(x) = +∞, (5)

then µ
β,s
φN

⇒ δs for all β > 0 and for all s ∈ {1, 2, . . . , q}.

Observe that µ
β,s
φN

⇒ δs implies µ
β,s
φN

(σ0 = s) → 1 in the limit N → ∞, i.e. a
phase transition occurs in the truncated model for large enough N . Since the
system is ferromagnetic, the sequence

(
µ

β,s
φN

(σ0 = s)
)

N≥1
is non-decreasing, but

the fact that it converges to 1 is not trivial. A weaker form of the conjecture is:

βc(φN ) → 0 when N → ∞,

where βc(φN ) is the critical inverse temperature of the model with potential φN ,
i.e.

βc(φN ) := inf
{
β > 0 : µ

β,s
φN

�= µ
β,s ′
φN

for s �= s ′}.
The conjecture is difficult to prove in such generality, since we don’t assume any
kind of regularity on φ. For example, the potential

φ(x) =
{

ε > 0 if ‖x‖ = k! for some k ∈ N,

0 otherwise,

which will enter in the family of interactions considered in Theorem 2, satisfies
the hypothesis of the conjecture. Usual perturbation techniques, such as Pirogov-
Sinai Theory(29), are of no use for studying the truncated version of this kind of
potential, since the domain of validity for the temperature shrinks to zero when
the range of interaction, here N , grows.



1220

Remark 1. Observe that since the Gibbs state of any one-dimensional model
with finite-range interactions is always unique (see for example Theorem 8.39
in(19), Conjecture 1 is false in dimension 1.

For d ≥ 2, our first result shows that the conjecture is valid under some assumption
on the speed of divergence of the series (5).

Theorem 1. (d ≥ 2) If φ ≥ 0 satisfies (3), and if (5) diverges faster than loga-
rithmically, i.e.

lim sup
N→∞

1

log |BN |
∑
x∈BN

φ(x) = +∞, (6)

then µ
β,s
φN

⇒ δs for all β > 0 and for all s ∈ {1, 2, . . . , q}.

Remark 2. As can be seen easily, condition (6) is satisfied by all potentials
which have slow algebraic decay, as in (2):

lim inf
‖x‖→∞

‖x‖αφ(x) > 0 for some 0 ≤ α < d.

We shall see later, in Remark 3, that for such potentials the range 0 ≤ α < d can
be extended to 0 ≤ α ≤ d, using the multiscale analysis of(3).

Sparse Interactions. We also give two results for potentials which don’t
have the symmetry (3). Namely, we consider interactions only along directions
parallel to the coordinate axis ei , i = 1, . . . , d, where e1 = (1, 0, . . . , 0), e2 =
(0, 1, 0, . . . , 0), . . . , ed = (0, 0, . . . , 1). That is, we are given a sequence (φn)n≥1,
φn ≥ 0, and2

φ(x) =
{

φ‖x‖ if x is parallel to some ei , i = 1, 2, . . . , d,

0 otherwise.
(7)

In d = 2, for example, there are only vertical and horizontal couplings. For poten-
tials of the form (7), assumption (5) of Conjecture 1 becomes:∑

n≥1

φn = +∞. (8)

The first result is for sequences (φn)n≥1 which don’t converge to zero:

2 The reader should pay attention to the following: we use n to index elements of the sequence (φn)n≥1,
whereas N is used as the parameter of truncation for φN .
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Theorem 2. (d ≥ 2). If

lim sup
n→∞

φn > 0, (9)

then µ
β,s
φN

⇒ δs for all β > 0 and for all s ∈ {1, 2, . . . , q}.

Notice that (9) implies (8), but with no information on the speed of divergence.
Our second result is where we prove our conjecture under the general condition (8),
with no assumption on the speed of divergence, but only in dimensions three or
more:

Theorem 3. (d ≥ 3). If ∑
n≥1

φn = +∞, (10)

then µ
β,s
φN

⇒ δs for all β > 0 and for all s ∈ {1, 2, . . . , q}.

The following proposition gives a criterion that will be used for showing weak
convergence towards the Dirac masses δs . The proof is postponed to Section 5.

Proposition 1. For all β > 0 and all s ∈ {1, 2, . . . , q}, the following holds:
µ

β,s
φN

⇒ δs when N → ∞ if and only if

lim
N→∞

µ
β,s
φN

(σ0 = s) = 1. (11)

3. INDEPENDENT LONG-RANGE PERCOLATION

To show that the truncated q-states Potts model at inverse temperature β > 0
exhibits a phase transition, it is actually sufficient to show that

µ
β,s
φN

(σ0 = s) >
1

q
. (12)

To obtain (11), which is stronger than (12), we shall reformulate our problem in
the framework of long-range independent percolation.

Consider the graph (Zd , Ed ), d ≥ 1, where Ed is the set of all unoriented edges
e = {x, y} ⊂ Zd × Zd , x �= y. Edge configurations are elements ω ∈ {0, 1}Ed

. For
a given function p : Zd\{0} → [0, 1] with

p(x) = p(y) when ‖x‖ = ‖y‖, (13)

called edge probability, we consider the independent long-range percolation pro-
cess in which each edge e = {x, y} is open (ω(e) = 1) with probability p(x − y),
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and closed (ω(e) = 0) with probability 1 − p(x − y), independently of other
edges. This process is described by the product measure on the σ -field on {0, 1}Ed

generated by cylinders, given by

P =
∏
e∈Ed

µe, (14)

where µe(ω(e) = 1) = p(x − y) is a Bernoulli measure on {0, 1}, independent
of the state of other edges. Observe that P is well-defined even when p is non-
summable. Define the truncated edge probability

pN (x) :=
{

p(x) if ‖x‖ ≤ N ,

0 if ‖x‖ > N ,

and denote by PN the truncated product measure defined as in (14) with pN

instead of p. We shall be interested in the percolation probability PN (0 ↔ ∞),
which is the probability of the event in which there exists, in the truncated model,
a path of open edges connecting the origin to infinity. When PN (0 ↔ ∞) > 0,
we say the truncated system percolates.

As can be seen in the following proposition, the percolation probability is a relevant
quantity for showing all our results for the Potts model, once the edge probability
is well chosen in function of the potential φ.

Proposition 2. (Fortuin,(13,14) ). Define p(x) by

p(x) := 1 − e−2βφ(x)

1 + (q − 1)e−2βφ(x)
. (15)

Then the magnetisation of the truncated long-range q-states Potts model with
potential φN (x) at temperature β and the probability of percolation of the origin in
the independent truncated long-range percolation process with edge probabilities
pN (x) are related by the following inequality:

µ
β,s
φN

(σ0 = s) ≥ 1

q
+ q − 1

q
PN (0 ↔ ∞). (16)

Using (12, 16) shows that percolation in the truncated independent model im-
plies phase transition in the truncated Potts model. This holds once the potential
φ and the probability p are related by (15), which is well suited for our pur-
poses since (15) implies that φ and p are bound to have the same asymptotic
behaviour: as can be seen, there exist two positive functions C± = C±(β, q) such
that

C−φ(x) ≤ p(x) ≤ C+φ(x) ∀x �= 0.
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In particular, non-summability of φ implies non-summability of p. Although it
does not appear exactly in this form in the literature, (16) is standard, and can
be obtained via the random cluster representation of the measure µ

β,s
φN

, and its
domination properties with respect to Bernoulli product measures. We refer to the
literature(15,13,14,1,20) for details.

By Proposition 2, long-range independent percolation can be used to show all
the results stated previously for the Potts model. We therefore reformulate and
prove the equivalent of the results of Section 2 in the context of independent
percolation: using Proposition 2, Theorem 1 (resp. 2, 3)will follow from Theorem 4
(resp. 5, 6).

For percolation, our conjecture is the following: when 13 holds and∑
x �=0

p(x) = +∞, (17)

then limN→∞ PN (0 ↔ ∞) = 1. In one dimension, percolation with edge prob-
abilities satisfying 17 was studied in(21), where it was shown in particular that
P(0 ↔ ∞) = 1. Our first result for percolation is

Theorem 4. (d ≥ 2) There exists c = c(d) > 0 such that if (13) holds and if

lim sup
N→∞

1

log |BN |
∑
x∈BN

p(x) ≥ c, (18)

then limN PN (0 ↔ ∞) = 1.

Remark 3. As can be seen easily, 18 is satisfied when

λ := lim inf
‖x‖→∞

‖x‖α p(x) > 0, for some 0 ≤ α < d. (19)

In fact Theorem 4 can be obtained, under condition 19, using the multiscale
analysis of Berger,(3) for all 0 ≤ α ≤ d. Our condition 18 allows the function p(·)
to behave in some irregular manner, but does not cover the case α = d, unless λ

is assumed sufficiently large.

Proof of Theorem 4: The proof is a simple (almost trivial) blocking ar-
gument. Fix N large. For each s ∈ S := {(s1, . . . , sd ) : si = ±1}, define the
quadrant QN

s (0) := {y ∈ Zd : 0 < si yi ≤ N , i = 1, 2, . . . , d}. For any x ∈ Zd ,
let QN

s (x) := x + QN
s (0). A site x is good if there exists, for all s ∈ S, a site
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x

QN
(++)(x)

QN
(+ )(x)

QN
( +)(x)

QN
( )(x)

Fig. 1. Illustration of a good site x in the two-dimensional case.

y ∈ QN
s (x) such that the edge {x, y} is open (see Figure 1). We have

PN (x is good) =
∏
s∈S

[
1 −

∏
y∈QN

s (x)

(1 − p(x − y))
]

=
[
1 −

∏
y∈QN

s (0)

(1 − p(y))
]|S|

∀s ∈ S

≥
[
1 − exp

(
−

∑
y∈QN

s (0)

p(y)
)]|S|

∀s ∈ S

≥
[
1 − exp

(
− c1

∑
y∈BN

p(y)
)]|S|

, (20)

where we used the inequality log(1 − t) ≤ −t valid for all t < 1, the symmetry
(13), and c1 > 0 is a constant that depends only on the dimension. Next, consider
a partition of Zd into disjoint blocks of linear size 3N , obtained by translates
of the block C N (0) := [0, 3N )d ∩ Zd . That is, each block of this partition is of
the form C N (z) = 3zN + C N (0), for some renormalized vertex z ∈ Zd . We say a
block C N (z) is good if each x ∈ C N (z) is good. Now for two points x �= x ′, the
events {x is good} and {x ′ is good} are not necessarily independent, but since they
are increasing, FKG inequality gives

PN (C N (z) is good) ≥
∏

x∈C N (z)

PN (x is good).
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For small enough ε > 0 we have 1 − ε ≥ e−2ε . Using |C N (z)| ≤ c2|BN | and (20)
we thus get, when N is large enough,

PN (C N (z) is good) ≥ exp
[

− 2c2|S||BN | exp
(

− c1

∑
y∈BN

p(y)
)]

= exp
[

− 2c2|S| exp
(

log |BN | − c1

∑
y∈BN

p(y)
)]

.

If (18) holds with a well chosen constant c > 0 we get

lim sup
N→∞

PN (C N (z) is good) = 1,

i.e. there exists a sequence δk ↘ 0 and a diverging sequence N1, N2, . . . such that

PNk (C Nk (z) is good) ≥ 1 − δk ∀k. (21)

Notice that for each k the process (Xk
z )z∈Zd defined by

Xk
z :=

{
1 if C Nk (z) is good,

0 otherwise,
(22)

is 1-dependent, i.e. Xk
z and Xk

z′ are independent when ‖z − z′‖ > 1. By a The-
orem of Liggett, Stacey and Schonmann,(27) (Xk

z )z∈Zd stochastically dominates
an independent Bernoulli process (Zk

z )z∈Zd of parameter ρk > 0, and (21) im-
plies limk→∞ ρk = 1. Take k large enough such that ρk > pc(Zd , site), where
pc(Zd , site) is the critical threshold of Bernoulli nearest-neighbour site percola-
tion. For such k, the process (Zk

z )z∈Zd is supercritical and by domination there
exists an infinite cluster of good boxes. It is easy to see that any infinite connected
component of good boxes yields an infinite connected component of sites of the
original lattice. By taking N large one can thus make PN (0 ↔ ∞) arbitrarily close
to 1. �

Remark 4. Criterion (18) concerns the behaviour of the sum
∑

x∈BN
p(x) for

large N , and not the details of the function p(·). This has an interesting conse-
quence, as the following discussion shows. Assume p is such that (18) holds.
Then Theorem 4 guarantees the existence of some N such that the system whose
edges e = {x, y} are all of size at most ‖x − y‖ ≤ N , with edge probabilities p(·),
satisfies PN (0 ↔ ∞) > 0. As seen in the proof, the integer N is fixed once the
sum of the edge probabilities passes a given value KN , i.e.∑

x∈BN

p(x) ≥ KN .

Now, observe that the function p can be modified inside BN , but as long as the
sum is preserved, the percolation probability remains positive. For example, if
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π : BN → BN is any permutation preserving the symmetry ‖π (x)‖ = ‖π (y)‖ for
‖x‖ = ‖y‖, then ∑

x∈BN

p(π (x)) =
∑
x∈BN

p(x) ≥ KN ,

and so the truncated system with edge probability p(π (·)) also percolates. This
comment suggests that the sum

∑
x∈BN

p(x), rather than the individual edge prob-
abilities, is the relevant parameter in the study of percolation in the truncated
model. This property can also be easily verified for long-range percolation on
trees.

Sparse Connections. We now give two results concerning systems where
connections are not isotropic, and we will consider the case where a connection
can be opened between two sites x, y only if these lie on a same coordinate
axis. That is, p(x) �= 0 only if x is parallel to one of the coordinate axes ei ,
i = 1, . . . , d. In this case the probabilities p(x) are determined by a sequence
(pn)n≥1, pn ∈ [0, 1], and

p(x) =
{

p‖x‖ if x is parallel to some ei , i = 1, 2, . . . , d,

0 otherwise.
(23)

We expect that ∑
n≥1

pn = +∞ (24)

implies limN PN (0 ↔ ∞) = 1. A particular case of (24) in which nothing is
assumed about the speed of divergence of the series is the following.

Theorem 5. (d ≥ 2) If

lim sup
n→∞

pn > 0 (25)

then limN PN (0 ↔ ∞) = 1.

Since this result has already appeared in ref.(16) we shall only remind the reader
of the strategy of the proof, which is very different, in spirit, from that of Theo-
rem 4. We consider the two-dimensional case d = 2. Nevertheless, the core of the
proof is to use properties of nearest-neighbour percolation in high dimensions d∗.
Denote by pc(Zd∗ ) the percolation threshold of nearest-neighbour Bernoulli edge
percolation on Zd∗ . It was shown by Kesten(25) that

pc(Zd∗ ) → 0 when d∗ → ∞. (26)
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Fig. 2. The embedding of the slab {1, 2} × Z2 ⊂ Z3 in (Z2,E2).

Then, let {1, 2, . . . , L}d∗−2 × Z2 denote the slab of thickness L in Zd∗ . It was shown
by Grimmett and Marstrand [22] that the slab percolation threshold satisfies

pc({1, 2, . . . , L}d∗−2 × Z2) → pc(Zd∗ ) when L → ∞. (27)

Now call 2ε the lim sup in (25), and consider some diverging sequence n1, n2, . . .

for which pnk ≥ ε. By (26) and (27) there exists a dimension d∗ and an integer L
(both depending on ε) such that for all k,

pnk ≥ ε > pc({1, 2, . . . , L}d∗−2 × Z2). (28)

It is then clear how to pursue: we embed the slab {1, 2, . . . , L}d∗−2 × Z2 in
(Z2, E2), using edges of sizes taken in the set {n1, n2, . . . }. Here, N must be
taken large enough. The point is that we only need a finite number of sizes,
and that by (28) each edge of the embedded graph has probability at least
ε > pc({1, 2, . . . , L}d∗−2 × Z2) of being open. This guarantees that the indepen-
dent truncated process on this graph is supercritical, hence contains with proba-
bility one an infinite cluster: PN (0 ↔ ∞) > 0. The simplest case for which the
embedding can be easily understood is when d∗ = 3 and L = 2, which we illus-
trated on Figure 2. For higher dimension, for example in the case where d∗ = 5,
we have represented on Figure 3 an embedding of the cube {1, 2}3 in (Z2, E2),
which shows what must be done in the general case. The formal embedding of the
slab {1, 2, . . . , L}d∗−2 × Z2 can be found in(16). We leave it as an exercise to the
reader to show that (26) can be used again to show that limN PN (0 ↔ ∞) = 1.

Remark 5. In order to deduce Theorem 2 from Theorem 5, one must estimate

lim sup
n→∞

pn = lim sup
n→∞

1 − e−2βφn

1 + (q − 1)e−2βφn
≥ C−(β, q) lim sup

n→∞
φn.

Observe that C−(β, q) goes to zero when β ↘ 0. Therefore, the dimension d∗ and
the thickness L of the slab used in the proof above diverges for large temperatures.
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0 ni1 ni2 ni2 + ni1 ni3

Fig. 3. The embedding of the cube {1, 2}3 on the positive axis of (Z2,E2), using long-range edges.
We have chosen ni1 := n1, ni2 := min{nk : nk > ni1 }, and ni3 := min{nk : nk > ni1 + ni2 }, in order
to avoid overlapping. Then, an infinite number of copies of this cube must be glued together, to form
the slab {1, 2}3 × Z2 embeded in (Z2,E2).

Remark 6. Theorem 2 follows from Theorem 5 and Proposition 2. Recently,
Bodineau(7) has proved the analogue of the result of Grimmett and Marstrand(22)

which we used in ref.(27) for the percolation threshold of the random cluster
measure associated to the Ising model (q = 2). Therefore, using the main result
of ref.(7) and the same embedding as above, one can obtain a more direct proof of
Theorem 2 for the case q = 2, without using Proposition 2.

Theorem 6. (d ≥ 3) If ∑
n≥1

pn = +∞ (29)

then limN PN (0 ↔ ∞) = 1.

Proof: The proof relies on the fact that sequences pn that satisfy (29) already
imply percolation in one dimension. So for a while we consider long-range perco-
lation on (Z, E1), and denote by P1 the product measure on {0, 1}E1

associated to
the sequence (pn)n≥1. Let θ := P1(0 ↔ ∞). By ref.(21), θ = 1. For simplicity we
first assume that there exists, for all m ∈ Z, a sequence n1 = 0, n2, . . . , nk = m
such that p|ni+1−ni | > 0. This implies, by ref.(2), that the infinite cluster is unique.

Fig. 4. The honeycomb lattice H and its embedding in Z3, denoted H′.
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We can thus write

P1(0 ↔ 1) ≥ P1(0 ↔ ∞, 1 ↔ ∞) (30)

≥ P1(0 ↔ ∞)P1(1 ↔ ∞) = θ2,

where we have used, in this order, uniqueness of the infinite cluster, FKG inequality,
and translation invariance. For a < b let TL (a, b) := [a − L , b + L]. Then {0 ↔
1 in TL (0, 1)} ↗ {0 ↔ 1} when L → ∞. Therefore for all δ > 0 there exists Lδ

such that for L ≥ Lδ ,

P1(0 ↔ 1 in TL (0, 1)) ≥ θ2 − δ. (31)

Since

θ2 = 1 > pc(H), (32)

where pc(H) is the percolation threshold of the honeycomb lattice H, we can take
δ small enough such that θ2 − δ > pc(H), and fix L ≥ Lδ .
Back to d = 3, consider the embedding of H in Z3, denoted H′, depicted on
Figure 4.

To each edge e = {x, y} ∈ H′ corresponds a one dimensional subgraph
(Z(e), E1(e)) ⊂ (Z3, E3) which consists of all the points (and long-range edges)
contained in the line supported by e; (Z(e), E1(e)) is nothing but a copy of
(Z, E1), embedded in (Z3, E3), containing e. All the previous considerations on
(Z, E1) (for example the intervals TL (x, y)) can be adapted in each subgraph
(Z(e), E1(e)). An important property of the embedding we have chosen is that the
graphs (Z(e), E1(e)), (Z(e′), E1(e′)) associated to two different edges e, e′ ∈ H′

have disjoint sets of edges.
We now define an edge e = {x, y} ∈ H′ to be good if and only if there exists,

in (Z(e), E1(e)), a path connecting x to y in TL (x, y). Clearly, edges are good
independently and for N = 2L + 2,

PN (e is good) = P1
N (x ↔ y in TL (x, y)) ≥ θ2 − δ > pc(H).

Therefore, there exist infinite paths of good edges, yielding the existence of
an infinite cluster on (Z3, E3) with edges of sizes smaller than N . Clearly,
limN PN (0 ↔ ∞) = 1, which finishes the proof. When the assumption made at the
beginning is not satisfied, it suffices to replace P1(0 ↔ 1), in (30), by P1(0 ↔ K )
for a well chosen K . The rest of the proof can be adapted in a straightforward way.
�

Observe that the only place where we used the divergence of the series (29) was
to obtain P1(0 ↔ ∞) = 1. A variant of Theorem 6 can therefore be reformulated
under a more abstract condition on the sequence (pn)n≥1, which can hold also
when the series

∑
n pn converges:



1230

Theorem 7. (d ≥ 3). Assume the sequence (pn)n≥1 is such that θ := P1(0 ↔ ∞)
satisfies θ2 > pc(H) and that the one-dimensional infinite cluster is unique. Then
PN (0 ↔ ∞) > 0 when N is large enough.

4. FINAL REMARKS

We have considered the problem of truncation in the long-range Potts
model with non-summable ferromagnetic interactions, via simple percolation
techniques. We have shown that for various families of potentials, a phase
transition occurs in the truncated model as soon as the parameter of truncation
N is taken sufficiently large. Notice that by Proposition 2 all the existing results
on truncation in long-range percolation(3,28,30) have their counterpart in the
long-range Potts model. We hope that embeddings, as those we used in the proofs
of Theorems 5 and 6, might be used for possible generalisations since they don’t
require any particular regularity of the potential/edge probability at infinity, and
give some insight into new mechanisms of phase transitions in systems with
long-range interactions.

Before ending, we make two remarks concerning the problem of truncation.

4.1. A Mean Field Limit.

As our results show, infinite systems with non-summable interactions have
trivial dependence on the temperature. In the physics literature, some methods
have been used in view of understanding the properties of large but finite systems
with non-summable interactions. These methods rely essentially on the study of
the mean field version of the original model. Namely, since the energy of the finite
system grows faster than its size in the limit of large volumes �, the model is
modified(9,10,31) by dividing the total hamiltonian by a well-chosen power of the
volume |�|. In the case of Ising spins σx = ±1 with ferromagnetic interactions
φ(x) = ‖x‖−α , 0 ≤ α ≤ d, this means considering the following formal identity:

β
∑
x �=y

φ(x − y)σxσy = β|�|δ
∑
x �=y

φ(x − y)

|�|δ σxσy . (33)

The scaling parameter δ must be chosen as a function of α in order to obtain a well-
defined thermodynamic limit for the potential |�|−δφ(x − y), leading to a mean
field inverse critical temperature β∗

c (α). Then, the “critical inverse temperature”
βc(α,�) of the real system in a finite volume � can be inferred to go to zero
as βc(α,�) ∼ β∗

c (α)|�|−δ . It was numerically observed(10,31) that β∗
c (α) depends

weakly on α, which has lead the authors to conjecture that all the systems with
0 ≤ α ≤ d have the same thermodynamic behaviour, i.e. identical to the pure
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mean field case α = 0. This “universal” mean field behaviour was then given an
intelligible explanation by Vollmayr-Lee and Luijten.(32)

We now wish to present an argument in favor of our conjecture, similar in
some ways to the strategy of ref.(32). Apart from helping to understand our conjec-
ture, it also sheds some light on the weak dependence in α observed numerically
in refs.(10,31). For simplicity we consider the case q = 2, i.e. the Ising model. Re-
member that a weaker form of Conjecture 1 is that when φ is non-summable, then
βc(φN ) → 0 as N → ∞, where βc(φN ) is the critical inverse temperature of the
truncated model φN . Define

eN :=
∑
x �=0

φN (x) =
∑
x∈BN

φ(x),

and consider the formal identity:

β
∑
x �=y

φN (x − y)σxσy = βeN

∑
x �=y

φN (x − y)

eN
σxσy

≡ β̂N

∑
x �=y

φ̂N (x − y)σxσy,

where we have defined the rescaled quantities

β̂N := βeN , φ̂N (x) := φN (x)

eN
. (34)

Since limN eN = +∞ (we assume φ is non-summable), we have limN β̂N = +∞.
Moreover, the new potential φ̂N has the following properties: 1) it has range at
most N , 2) it is summable ∑

x �=0

φ̂N (x) = 1,

and 3) limN φ̂N (x) = 0 for all x . Such properties remind us those of Kac potentials,
which are of the form �γ (x) := γ dϕ(γ x), where ϕ(x) ≥ 0 is bounded, supported
by [−1,+1]d , with

∫
ϕ(x)dx = 1, and γ > 0 is a small scaling parameter. �γ

thus has the following properties: 1) it has range γ −1, 2) it is summable:∫
�γ (x)dx = 1 ∀γ > 0,

and 3) limγ→0+ �γ (x) = 0 for all x . It is well known(24,26) that such potentials
give, in the van der Waals limit γ → 0+, a justification of the van der Waals-
Maxwell theory of liquid-vapor equilibrium: in this limit, the properties of the
system converge to those of mean field, regardless of the details of the function ϕ.
Moreover, it is knoww(8,11) that for γ > 0 the model is a good approximation to
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mean field: a phase transition occurs before reaching the mean field regime, and
supγ>0 βc(�γ ) < +∞.

It is tempting to ask whether this mean field behaviour of Kac potentials �γ

at small γ also holds for our potential φ̂N at large N , and to identify the parameters
γ −1 and N . Although φ̂N is not obtained by a rescaling of a given function, as �γ

is, one can expect that for a reasonable potential φ (for example of the type (2)),
the critical temperature βc(φ̂N ) is uniformly bounded in N : supN βc(φ̂N ) < +∞.
Therefore, if N is large enough so that β̂N > supN βc(φ̂N ) ≥ βc(φ̂N ), we have
a phase transition in the truncated model φN , as predicted by our conjecture.
Moreover, since we expect that the properties of the system with φ̂N converge to
those of mean field when N → ∞, independently of the fine structure of φ, this
again is in favor of the non-dependence on α observed in refs.(10,31)

Unfortunately, the only case where this scenario can be implemented rigor-
ously is for the constant potential: φ(x) = c > 0 for all x �= 0 (or, equivalently,
if α = 0). In this case we have φ̂N (·) = |BN |−11‖x‖≤N (·), and the correspondence
γ −1 ≡ N is immediate (this case is treated in detail in ref.(17)).

4.2. On the General Problem of Truncation.

We have seen that in the long-range ferromagnetic Potts model, most non-
summable interactions with the symmetry (3) are pathological in the sense that in
the limit N → ∞,

µ
β,s
φN

⇒ δs

for all β > 0 and all s ∈ {1, 2, . . . , q}. A natural question is to ask whether some
weak convergence also occurs in the case where φ is summable, i.e. when µ

β,s
φ is

well-defined. Is it that

µ
β,s
φN

⇒ µ
β,s
φ (35)

in the limit N → ∞? The answer to this question is clearly negative in d = 1.
Namely, for the Ising model (q = 2), there exist summable potentials for which
µ

β,+
φ (σ0 = +1) > 1

2 at low temperature,(12,18) but µ
β,+
φN

(σ0 = +1) = 0 for all N ,
as well known (see Remark 1). For d ≥ 3, Aernout van Enter gave us the following
example of a model with summable interactions in which the convergence (35)
fails. Consider the Potts model with q = 3, φ(x) = e−α‖x‖. It was shown recently
by Biskup, Chayes and Crawford(6) that when α is small enough, this model
has a first order phase transition in temperature. Namely, there exists βt > 0 and
δ+ > δ− > 0, such that µ

β,1
φ (σ0 = 1) ≤ δ− for β < βt , and µ

βt ,1
φ (σ0 = 1) ≥ δ+.

Since truncation is equivalent to strictly raising the temperature (i.e. lowering
β, see ref.(4)), we have µ

βt ,1
φN

(σ0 = 1) ≤ δ− for all N , and therefore (35) breaks
down.
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In the context of independent long-range percolation, the general problem of
truncation is formulated as follows: assuming P(0 ↔ ∞) > 0, does there exist
some large N such that PN (0 ↔ ∞) > 0? This is believed to be true in general,
with no assumption on the edge probability (other than, say, the symmetry (13),
or for sparse interactions as (23)). This property is non-trivial for the following
reason: the truncated measure PN converges weakly to P , but the Portmanteau
Theorem (see ref.(5)) doesn’t apply, due to the fact that in the product topology,
the boundary of the event {0 ↔ ∞} has strictly positive probability (1, in fact).
One can thus not conclude that PN (0 ↔ ∞) → P(0 ↔ ∞). Our results of
Section 3 and various existing results(3,16,28,30) give affirmative answer to the
problem of truncation for particular cases. An interesting problem is to see if
some counter-example can be found, similar to the one given above, in view of
constructing a model where truncation fails.

5. PROOF OF PROPOSITION 1

The proof uses arguments which are standard in statistical mechanics. First,
consider N , β, s as fixed and define, for any box �, x ∈ �,

a�(x) := µ
β,s
φN ,�(σx = s).

Due to the invariance of the interaction under translation, these numbers have the
following property:

a�+y(x + y) = a�(x). (36)

The main ingredient is the following lemma, which guarantees the existence of
the thermodynamic limit along any increasing sequence of boxes.

Lemma 1. Let (�(n))n≥1 be any increasing sequence of boxes (not necessarily
centered at the origin): �(n) ⊂ �(n + 1), �(n) ↗ Zd . Then (a�(n)(x))n≥1 is non-
increasing, i.e. limn a�(n)(x) exists for all x ∈ Zd .

Proof: The proof relies on the FKG inequality. Fix x and take n large enough
so that x ∈ �(n). We use the random-cluster representation of the probability
µ

β,s
φN ,�(n)(σx = s). Let E(n) be the set of edges of size at most N with at least one

endpoint in �(n), and ∂+�(n) = {y ∈ �(n)c : ∃x ∈ �(n), ‖x − y‖ ≤ N }. Then
(see refs.(1,13–15,20) for details):

a�(n)(x) = µ
β,s
φN ,�(n)(σx = s) = 1

q
+ q − 1

q
�w

�(n)(x ↔ ∂+�(n)).

The wired random cluster measure �w
�(n) is defined on {0, 1}E(n), with parameter

q and edge probabilities pN (x) = 1 − exp(−2βφN (x)). Let Bn+1 denote the event
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in which all edges in E(n + 1)\E(n) are open. Then

�w
�(n)(x ↔ ∂+�(n)) = �w

�(n+1)(x ↔ ∂+�(n)|Bn+1)

= �w
�(n+1)(x ↔ ∂+�(n + 1)|Bn+1)

≥ �w
�(n+1)(x ↔ ∂+�(n + 1)).

We used FKG inequality, since {x ↔ ∂+�(n + 1)} and Bn+1 are both increasing
events. This shows that (a�(n)(x))n≥1 is monotone, and that the limit n → ∞ exists,
which proves the lemma. �

Corollary 1. Consider the particular sequence �n := [−n,+n]d ∩ Zd . Then
a(x) := limn a�n (x) exists and is constant: a(x) = a(0) for all x ∈ Zd .

Proof: Fix x ∈ Zd and consider any subsequence (�′
n)n≥1 ⊂ (�n)n≥1 with the

property:

x ∈ �′
1 ⊂ �′

2 + x ⊂ �′
3 ⊂ �′

4 + x ⊂ . . .

Consider the sequence (�∗(n))n≥1 defined by

�∗(n) :=
{

�′
n if n odd,

�′
n + x if n even.

Then �∗(n) ⊂ �∗(n + 1) and by Lemma 1, limn a�∗(n)(x) exists. Call this limit a.
By considering the subsequences (�∗(2k))k≥1 and (�∗(2k + 1))k≥1, we have

a = lim
k→∞

a�∗(2k)(x) = lim
k→∞

a�′
2k+x (x) = lim

k→∞
a�′

2k
(0) = a(0),

a = lim
k→∞

a�∗(2k+1)(x) = lim
k→∞

a�′
2k

(x) = a(x),

where we used (36). This shows a(x) = a(0). �

Proof of Proposition 1: If µ
β,s
φN

⇒ δs then (11) holds since {σ ∈ � : σx = s}
is a cylinder containing the ground state s. Then, assume (11) holds. Let A be
a cylinder. That is, there exists a finite set D ⊂ Zd and for each x ∈ D a set
Ex ⊂ {1, 2, . . . , q} such that A = {σ ∈ � : σx ∈ Ex ∀x ∈ D}. If A � s, then

µ
β,s
φN

(Ac) = µ
β,s
φN

(∃x ∈ D, σx �∈ Ex

) ≤
∑
x∈D

µ
β,s
φN

(σx �∈ Ex ) ≤
∑
x∈D

µ
β,s
φN

(σx �= s).

(37)

By Corollary 1, µ
β,s
φN

(σx = s) = µ
β,s
φN

(σ0 = s). When (11) holds, µ
β,s
φN

(σ0 = s) →
1 when N → ∞, which gives µ

β,s
φN

(Ac) → 0. If A �� s, the same computation

(replacing Ac by A) yields µ
β,s
φN

(A) → 0. Therefore, µ
β,s
φN

⇒ δs . �
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